
Dynamic Programming in Tabular Case
CSE599G: Deep Reinforcement Learning

Aravind Rajeswaran and Kendall Lowrey

University of Washington Seattle

April 2, 2018

Overview

Last week:

● Introduction to the course

● Basics of MDPs

Some general comments:

● Probability and general mathematical maturity assumed as prerequisite

● MDP notations are indeed a bit hard to understand from just one pass

This week:

● Review MDPs

● Algorithm to solve some very simple MDPs with major assumptions

● Start moving towards learning with function approximation (deepRL)

Parts of MDP: Review

● Formally, MDP is a tuple:

○ = states (joint positions in robot, concentrations in chemical reaction)

○ = actions (motor torques, how much chemical to add)

○ is the “reward” function

○ is the transition dynamics

○ = initial state distribution (i.e. state at time = 0)

○ = horizon (how long does the MDP last)

○ = discount factor (forget this for now, we’ll come to this later)

M = hS,A,R,P, ⇢0, �, T i

S
A
R(s, a) ! R

P ⌘ P(s0|s, a)
⇢0

T
�

Grid world example

-5 -5 +5

-5 -5

-5 -5

= goal (+5 reward)

= locations to avoid
(obstacles, pits etc.
-5 reward)

Task = find the optimal policy to go from any location to the goal location

Actions: up, down, left, right

Dynamics:
• Move to desired ”adjacent”

grid with ℙ = 0.7 and the two
orthogonal directions with
ℙ = 0.15 each.

• If at edges of grid, all
probability of moving outside
goes towards being in the
same location. 0.15 0.15

0.7

action=“up”

Student MDP example

School

drink

study

chat

Bar

Party

JobLibrary

0.6

0.1

0.3

0.9

0.1

0.2

0.5

0.3

R=+5

R=-5

R=+10

R=0 R=+1000

Value Functions: Review

● Let’s focus on what it means for now; leave how to compute it for later.

● Let’s forget discounting for now (we’ll get to it later)

● !"($, &): How much cumulative reward do I expect to accumulate till the end of

the horizon if I start from state (s) at time (t) and follow policy "

!(), * = , -
./0.

./01
2()./, 3./) |). =)

●)./ and 3./ are random variables: how are they generated?

● Define trajectory as 5.:1 = ()., 3., 7.,).89, 3.89, 7.89, …)1, 31, 71), so that the

expectation is now over trajectories. Quantities generated as

).89 ∼ ℙ .)., 3. , 3. ∼ >(. |).) and 7. ∼ 2()., 3.)

Value Functions: Review

● !"($, &): How much cumulative reward do I expect to accumulate till the end of

the horizon if I start from state (s) at time (t) and follow policy "

!(), * = , -
./0.

./01
2()./, 3./) |). =)

● Forgetting efficiency, one way to compute the above quantity, that is also

conceptually the easiest to understand is as follows:

○ Start from s and t (so T-t steps left), and simulate trajectories

○ For each trajectory, add up the rewards

○ Take average over trajectories

Horizon and discounting

● Summing up rewards in the infinite horizon case is problematic:

!" # = % &
'()

'(*
+(#', .') |#) = #

● The time is not required as an argument to V (time runs till infinity)

● The RHS in general need not be finite (e.g. all rewards are ≥ 2345)

● One way to make the math well defined is average case:

!" # = lim9→*
1
< % &

'()

9
+ #', .' | #) = #

● Analyzing the average case is harder, but there is some theory

Horizon and discounting

● Discounting is another way to make the quantities well defined:

● If ! ", $ ≤ &'() ∀(", $) (i.e. there is an upper bound on the reward), we have:

∑./0./123!("., $.) ≤ 4
452 &'() so that 67 is always well defined for 8 ∈ [0,1)

● Intuition: Drop an explicit or external clock. Start a new clock from each state

and pretend that the horizon is 4
45= . (usually called the “effective horizon”)

● Has some other motivations like we discussed earlier: time value of money in

economics, risk-sensitivity and uncertainty in neuroscience etc.

67 " = ? @
./0

./1
23!("., $.) | "0 = "

Why we need the value function

● Summarize long term quantities and abstract away temporal nature

● If we can get the optimal value function, we have solved the MDP

● Provides a recursive recipe for attacking the MDP problem

!∗ # = %&'(%)* + , #, % + /0∗ #1
!∗ # = %&'(%)* 2∗(#, %)

Plan for today

● Given a policy !, how to efficiently compute "# ?

- Called policy evaluation

- Today, we will do this assuming we know the transition model

- Much harder in the unknown model case, topic of research

● Given ! and "# , how to improve policy?

- Called policy improvement

- Today, we will do this assuming a tabular representation

- Much harder with function approximation, a bit part of DeepRL

● Iteratively performing policy evaluation and policy improvement would lead us

to the optimal policy. We will show that in the tabular case, this scheme would

converge to the globally optimal solution!

Finite MDPs and tabular representation

● Finite MDPs implies a finite number of states and actions

● We can represent such problems through a table

● Grid world example: (|. | = number of entries)

○ Each grid square is a state

○ For each state, we have 4 actions

○ So, policy is a table with $ ×|&| entries.

○ Value function is a table with |$| entries

○ Q function is a table with $ ×|&| entries.

○ Transition dynamics is a table with
$ × & ×|$| entries.

○ Overall, space complexity is '($) &)

Naïve Policy Evaluation

● Let us consider the naïve simulation based approach we outlined earlier

● We will simply use the definition of value function, and approximate the

expectation using sample based average. We will simulate for an effective

horizon of ! = #
#$%

● Complexity of this procedure is: &((× * × (×!×+)
● Need to do this for every state, need to query policy for action, need to query

MDP for the next state – we repeat this for T steps and K times (sample avg)

● For reasonable level of variance in the estimate, we need + = & (.

Overall complexity is: &((-|*|!). Can we do better? YES!!

/0 1 = 2 3
456

457
849(14, ;4) | 16 = 1

Bellman Recursion

!"($)

& $, () & $, (*

!"($′)

!" $ =-
.
/ ($ & $, (+ 1-

23
ℙ $3 $, (!"($3)

Bellman Recursion

!" #, % = ' #, % +)*
+,
ℙ #, #, % ."(#,)

!" #, % = ' #, % +)*
+,
ℙ #, #, % *

1,
2 %, #, !"(#,, %,)

Bellman Recursion

● Structure due to the sequential nature of the problem and Markov property

● If we know values at some state, we can ”backup” this information to other

states, since values need to obey the recursion.

● This bootstrapping is the key to the efficiency of many RL methods.

● Using the recursive relationship, policy evaluation has complexity: !(# $)
● Define following for notational convenience:

&' (=*
+
, - (&((, -)

ℙ' (0 (=*
+
, - (ℙ((0|(, -)

Policy evaluation

● Rewriting the recursive relationship:

● In matrix notation, this is: !" = $" + &'"!"

● Solve this as a system of linear equations:

!" = (− &'" *+$"

!" , =-
.
/ 0 , $,, 0 + &-

23
ℙ ,3 ,, 0 !"(,3)

!" , = $" , + &-
27
ℙ" ,3 , !"(,3)

Policy evaluation

When do we have a solution?

● Note that each row of the P matrix sums to 1 and each entry is >=0 and <1

● Thus, the maximum eigen value of P is 1

● (" − $%&) is thus invertible when $ ∈ [0,1)
Incremental solution method instead of matrix inversion (k is iteration counter):

-./0 = 2& + $%&-.
i.e. for each state 4 ∈ 5 do:

-./0& 4 = 2& 4 + $6
78
%& 49 4 -.& 49

Stop when -./0& − -.& : ≤ < where |>|: = maxB |>B|
This incremental approach is related to Jacobi method for solving linear equations.

Policy evaluation

What is the complexity?

● For the matrix inversion procedure, (" − $%&) is a matrix of size (×|(| , so this

has complexity (naïve inversion methods): +((,)
● For the incremental approach, per iteration requires +((-) given %& matrix

● Incremental approach converges in O(/) iterations

● Intuition: Larger $ means that value function accounts longer effective horizon,

making estimation harder. Also, 0
012 is related to the spectral norm of (" − $%&)

● Computing %& has a cost of + (- 3 (one time)

● So overall, the incremental method has complexity of +((-/ + (- 3) in the

worst case, but in practice much faster.

● Compare to the naïve case of +((, 3 /)

Policy Improvement

● Given ! and "#, get a new policy !$%& that is better.

● Notice that given "# and the MDP (reward, transitions), we can write the Q

function easily as: '# (, * = , (, * + . ∑01 2 (3 (, * "# (3

● Also, notice that max7 '# (, * ≥ "#(()

● Taking a cue from this, define the new policy as:

!$%&(() = argmax7 '#((, *) ∀(

Policy Iteration

● Policy iteration is an iterative improvement algorithm to fine the optimal policy

● We will work with deterministic policies now (dynamics can still be stochastic)

● For infinite horizon finite MDPs, there will be at least one globally optimal

deterministic policy (why?)

Initialize !" for all states (arbitrarily)

For i = 1,2,3, … (till convergence)

- Policy evaluation: compute the value of !# (i.e. $%&)
- Generate corresponding Q function

- Policy improvement: !#'(= argmax/ 0%&(2, 4)
Stop when policy does not change for any state

Policy Iteration
Each policy improvement step leads to monotonic improvement in the value

!"# $ ≤ max
)
*"# $, ,

= max
)
. $, , + 01

23
4 $5 $, , !"#($5)

= . $, 89:; $ + 01
23
4 $5 $, 89:; $ <=> ?5

≤ . $, 89:; $ + 01
23
4 $5 $, 89:; $ @AB

C3
D=> ?5, C5

= . $, 89:; $ + 01
23
4 $5 $, 89:; $. $5, 89:; $5 + 01

233
4 $55 $5, 89:; $5 !"# $55

= !"#EF($)
This holds for all states. So policy iteration leads to monotonic improvement.

By definition of 89:;, which takes the max action

Max better than average (V)

Each equality/inequality written wrt previous expression

Simply expanding out the Q function

Next Class

● Convergence of policy iteration to globally optimal solution

● Value iteration (related method) and proof of convergence

● Recitation for setting up MuJoCo (for Homework 1)

● Start DeepRL with simplest method: evolutionary strategies

