
CSE599G: Deep Reinforcement Learning

Homework 1: model-free policy gradient methods

Due: April 23, 2018

In this homework, the goal is to understand policy gradient methods and use them

to solve some simple continuois control tasks. You should have the code infrastructure

(mujoco, python wrapper, starter code) set-up before attempting this homework. If you

have difficulties in this stage, contact the instructors during office hours. In the lectures,

we discussed the REINFORCE algorithm (aka vanilla policy gradient or VPG) and some

extensions like NPG, TRPO, PPO etc. We will compare some of these algorithms and also

study some variance reduction techniques.

General instructions on experiments and submission

We have provided starter code for VPG and a linear baseline for variance reduction. We will

be using the provided Swimmer, HalfCheetah, and Ant environments for this homework.

• We will be overall considering a budget of 500 trajectories (which is 500× 500 = 0.25

million timesteps). How many policy updates and how to split the trajectory budget

across the policy updates should be construed as a hyperparameter. One reasonable

starting point is 10 trajectories per update and 50 updates.

• You should run all the problems below for 3 random seeds and report the average (for

conferences, it is recommended to run close to 10 seeds).

• If you are trying multiple hyperparameter combinations, you should provide one plot

per environment per question. For example, if you tried 5 hyperparameter combina-

tions for the warmup problem below, you should have 3 plots (one each for Swimmer,

HalfCheetah, and Ant), each containing 5 training curves. Label the plots with the

hyperparameters.

• For the learning curves, you should plot the average return obtained with the evaluation

rollouts performed with the mean policy (of the gaussian policy). This score is also

logged with the starter code we provided and has the key name eval score in the

log.pickle file.
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1 Warmup problem

1. ( 3 points) The first task is to run the provided VPG code on the three environments.

You should play around with the following hyperparameter settings: (a) number of

trajectories per policy update; (b) learning rate for the optimization step. Were you

able to get reasonable results? Report your findings by providing the learning curves

for the top 3 hyperparameter settings you found for each environment (one plot per

environment, each plot containing 3 curves corresponding to 3 different hyperparameter

settings).

(Note: It is fine if you are not able to get good results with this vanilla approach, just

provide an honest summary of the findings.)

2 VPG with adaptive step size

1. ( 3 points) Now, we will perform a line-search to find a more reasonable step size.

We will perform the linesearch on the KL-divergence. Recall that the policy gradient

update has the following form:

θk+1 = θk + αgvpg (1)

i.e. we have the search direction to be the VPG direction, gvpg, and a step-size (learn-

ing rate) of α. Let us pick a desired KL-divergence value, say δ̄. Now, we will consider

initially a very large value of α, using which we can compute a “candidate” new pa-

rameters: θ̂k+1 = θk + αgvpg. With this candidate new policy, we can compute the KL

divergence between the successive policies:

δ = KL
(
πθk ||πθ̂k+1

)
(2)

At each iteration, we shall refine our guess for α based on the following rule: if δ > δ̄,

then set α = 0.9α and try again (i.e. recompute a new θ̂k+1 using this new α), till we

get a small enough step in the KL metric. Repeat the warm-up problem above with

this algorithm and report the results. Now you should try different choices of δ̄ instead

of α as in the warm-up problem.

3 Natural gradients

1. ( 5 points) A more principled way to ensure maximal performance improvement while

moving along the KL metric is to use natural gradients. Recall that the natural policy

2



gradient takes the form:

θk+1 = θk + αnpg ĝnpg = θk +

√
δ̄

gTvpg gnpg
gnpg, (3)

where gnpg = F−1gvpg. We will implement this algorithm and repeat the empirical

exercise as in the previous problems. You are expected to again try a few different

settings for δ̄ and number of trajectories per iteration. In this problem, we will estimate

the Fisher matrix as:

F =
1

|D|
∑
i∈D

∇ log π(ai|si; θk)∇ log π(ai|si; θk)T (4)

where D denotes (possibly subset of) samples collected using policy π(.; θk) and |D|
the number of samples.

You can start this problem by copying batch reinforce.py and writing the code for

the computation of F as above. You will have to create a function that iterates over

each data point (si, ai) to compute the gradient of the mean LL function of the policy

with respect to the parameters of the policy. Once the Fisher matrix is computed,

use the conjugate gradient algorithm (e.g. the implementation in scipy) to compute

F−1gvpg. The flat vpg function may provide some structure for how the gradient

computation works.

(Note: in practice, for larger problems, we don’t estimate the Fisher matrix this way.

We use the other techniques discussed in the class – which are computationally much

faster but at the same time harder to implement. We will provide you access to these

more efficient methods for your course projects, if required.)

4 Variance Reduction

1. ( 4 points) In the class we discussed that variance reduction is critical to the success of

policy gradient methods. We discussed how to use an approximate value function as

baselines for the purpose of variance reduction. In this problem, you should implement

a neural network baseline which predicts the empirical returns. In particular, for state

and time (s, t), the targets are generated according to:

target(s, t) =
T∑
t′=t

γt−t
′
rt′

Let w be the parameters of the MLP baseline. We train a network with weights w to

solve the following optimization problem:

minimize
w

||MLP (s, t, w)− target(s, t)||22
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Use this baseline instead of the linear baseline, along with NPG, to solve the three

environments. Fix the hyperparameters related to NPG to be the best you found in

the previous question. Change only the baseline function, and report results for a few

different choices of baseline architectures. For the inputs to the baseline MLP, use

the same features function used in the linear baseline code. In other words, the linear

baseline does a linear transformation of the features, whereas the MLP baseline will act

on the same features and do a nonlinear transformation defined by the neural network.

5 Bonus points

Try other things that seem interesting to you. Talk to instructors for some ideas if needed.

If you submit other things you tried, and give a concise summary of what worked, what

didn’t, along with plausible explanations, we will consider it for bonus points.

4


