Combining Trajectories and Policies

Aravind Rajeswaran & <u>Kendall Lowrey</u> May 2, 2018

Last time...

We discussed how having access to a model can make for quick trajectory (aka local policy) learning.

What a model is...

We walked through LQR as indirect trajectory optimization.

Discussed a method of direct optimization with soft constraints.

Trajectories

Policies

Exploits model to converge

No prior information (model) needed

Controller is very local

Policy can be "global"

Efficient but slow

"Robust" and fast to evaluate policy

Combining Trajectory Data with Policies

Behavior Cloning?

Distribution shift between trajectory data and policy

Backprop through model into Policy?

Policy now sensitive to model errors; long term coupled backprop problem

Imitation Learning (DAgger)?

No way to know when data augmentation is needed

Benefit of trajectories is we can always make more!

Problem

$$\mathbf{x}_t = f(\mathbf{x}_{t-1}, \mathbf{u}_{t-1})$$

Have a model / Want to respect the system dynamics

$$\mathbf{u}_t = \pi_\theta(\mathbf{x}_t)$$

Want: A policy to tell us / agent what to do for a given state.

$$\min_{\mathbf{u}_1,\ldots,\mathbf{u}_T,\mathbf{x}_1,\ldots,\mathbf{x}_T} \sum_{t=1}^T c(\mathbf{x}_t,\mathbf{u}_t)$$

Want: a sequence of states and actions to result in low cost or high reward

Solution: Constrained Optimization $\min_{\mathbf{u}_1,\ldots,\mathbf{u}_T,\mathbf{x}_1,\ldots,\mathbf{x}_T,\theta}\sum_{t=1}^{t} c(\mathbf{x}_t,\mathbf{u}_t)$ s.t. $\mathbf{x}_t = f(\mathbf{x}_{t-1}, \mathbf{u}_{t-1})$ s.t. $\mathbf{u}_t = \pi_{\theta}(\mathbf{x}_t)$

$$\min_{\tau,\theta} c(\tau) \text{ s.t. } \mathbf{u}_t = \pi_{\theta}(\mathbf{x}_t)$$

Optimization with Constraints

Using Method of Lagrange Multipliers:

$$\min_{\mathbf{x}} f(\mathbf{x}) \text{ s.t. } C(\mathbf{x}) = 0 \qquad \qquad \mathcal{L}(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda C(\mathbf{x})$$

We can instead do Dual Gradient Descent:

1. Find
$$\mathbf{x}^{\star} \leftarrow \arg\min_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda)$$

2. Compute $\frac{dg}{d\lambda} = \frac{d\mathcal{L}}{d\lambda}(\mathbf{x}^{\star}, \lambda)$ $g(\lambda) = \mathcal{L}(\mathbf{x}^{\star}(\lambda), \lambda)$
3. $\lambda \leftarrow \lambda + \alpha \frac{dg}{d\lambda}$

Guided Policy Search

$$\min_{\tau,\theta} c(\tau) \text{ s.t. } \mathbf{u}_t = \pi_{\theta}(\mathbf{x}_t)$$

$$\bar{\mathcal{L}}(\tau,\theta,\lambda) = c(\tau) + \sum_{t=1}^{T} \lambda_t (\pi_\theta(\mathbf{x}_t) - \mathbf{u}_t) + \sum_{t=1}^{T} \rho_t (\pi_\theta(\mathbf{x}_t) - \mathbf{u}_t)^2$$

1. Find $\tau \leftarrow \arg \min_{\tau} \bar{\mathcal{L}}(\tau, \theta, \lambda)$ (e.g. via iLQR)

2. Find $\theta \leftarrow \arg \min_{\theta} \bar{\mathcal{L}}(\tau, \theta, \lambda)$ (e.g. via SGD)

3.
$$\lambda \leftarrow \lambda + \alpha \frac{dg}{d\lambda}$$

What about Gaussian Systems?

$$\min_{p,\theta} E_{\tau \sim p(\tau)}[c(\tau)] \text{ s.t. } p(\mathbf{u}_t | \mathbf{x}_t) = \pi_{\theta}(\mathbf{u}_t | \mathbf{x}_t)$$
$$\min_{p} \sum_{t=1}^{T} E_{p(\mathbf{x}_t, \mathbf{u}_t)}[\tilde{c}(\mathbf{x}_t, \mathbf{u}_t)] \text{ s.t. } D_{\mathrm{KL}}(p(\tau) || \bar{p}(\tau)) \leq \epsilon$$

$$p(\mathbf{u}_t|\mathbf{x}_t) = \mathcal{N}(\mathbf{K}_t(\mathbf{x}_t - \hat{\mathbf{x}}_t) + \mathbf{k}_t + \hat{\mathbf{u}}_t, \Sigma_t) \qquad \bar{p}(\mathbf{u}_t|\mathbf{x}_t) = \pi_{\theta}(\mathbf{u}_t|\mathbf{x}_t)$$

$$p(\tau) = p(\mathbf{x}_1) \prod_{t=1}^T p(\mathbf{u}_t | \mathbf{x}_t) p(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{u}_t) \qquad \bar{p}(\tau) = \underline{p(\mathbf{x}_1)} \prod_{t=1}^T \bar{p}(\mathbf{u}_t | \mathbf{x}_t) \underline{p(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{u}_t)}$$

dynamics & initial state are the same!

Interactive Control of Diverse Complex Characters with Neural Networks

Igor Mordatch, Kendall Lowrey, Galen Andrew, Zoran Popovic, Emanuel Todorov

https://papers.nips.cc/paper/5764-interactive-control-of-diverse-complex-characters-with-neural-networks.pdf

Interactive Control of Diverse Complex Characters with Neural Networks

Igor Mordatch, Kendall Lowrey, Galen Andrew, Zoran Popovic, Emanuel Todorov

Algorithm 1: Distributed Stochastic Optimization

1 Sample sensor noise $\bar{\varepsilon}^{i,t}$ for each t and i.

² Optimize N trajectories (sec 3): $\bar{\mathbf{X}}^i = \operatorname{argmin}_{\mathbf{X}} C_i(\mathbf{X}) + \sum_t R(\mathbf{s}^{i,t}, \mathbf{a}^{i,t}, \bar{\boldsymbol{\theta}}, \bar{\boldsymbol{\varepsilon}}^{i,t}) + \frac{\eta}{2} \|\mathbf{X} - \bar{\mathbf{X}}^i\|^2$

³ Solve neural network regression (sec 4): $\bar{\boldsymbol{\theta}} = \operatorname{argmin}_{\boldsymbol{\theta}} \sum_{i,t} R(\bar{\mathbf{s}}^{i,t}, \bar{\mathbf{a}}^{i,t}, \boldsymbol{\theta}, \bar{\boldsymbol{\varepsilon}}^{i,t}) + \frac{\eta}{2} \left\| \boldsymbol{\theta} - \bar{\boldsymbol{\theta}} \right\|^2$

4 Repeat.

Step 2 can be done in parallel across a cluster

Optimization is still soft constraints like in CIO, so no need for KL or other

Asynchronous: the soft constraints mean that our N trajectories isn't a fixed number

Path Integral Guided Policy Search

Yevgen Chebotar Mrinal Kalakrishnan Ali Yahya Adrian Li Stefan Schaal Sergey Levine

https://arxiv.org/pdf/1610.00529.pdf

Path Integral Guided Policy Search

Yevgen Chebotar Mrinal Kalakrishnan Ali Yahya Adrian Li Stefan Schaal Sergey Levine

Algorithm 1 MDGPS with PI² and Global Policy Sampling

- 1: for iteration $k \in \{1, \ldots, K\}$ do
- 2: Generate samples $\mathcal{D} = \{\tau_i\}$ by running noisy π_{θ} on each randomly sampled instance
- 3: Perform one step of optimization with PI² independently on each instance: $\min_{p} E_{p}[l(\tau)] \text{ s.t. } D_{KL} \left(p(\mathbf{u}_{t} | \mathbf{x}_{t}) \| \pi_{\theta}(\mathbf{u}_{t} | \mathbf{x}_{t}) \right) \leq \epsilon$
- 4: Train global policy with optimized controls using supervised learning:

 $\pi_{\theta} \leftarrow \arg\min_{\theta} \sum_{i,t} D_{\mathrm{KL}} \left(\pi_{\theta}(\mathbf{u}_t | \mathbf{x}_{i,t}) \| p(\mathbf{u}_t | \mathbf{x}_{i,t}) \right)$

5: end for

PLATO: Policy Learning with Adaptive Optimization Gregory Kahn, Tianhao Zhang, Sergey Levine, Pieter Abbeel

https://arxiv.org/pdf/1603.00622.pdf

PLATO: Policy Learning with Adaptive Optimization

Gregory Kahn, Tianhao Zhang, Sergey Levine, Pieter Abbeel

Algorithm 1 PLATO algorithm

- 1: Initialize data $\mathcal{D} \leftarrow \emptyset$
- 2: for i = 1 to N do
- 3: for t = 1 to T do
- 4: Optimize π_{λ}^{t} with respect to Equation (1)
- 5: Sample $\mathbf{u}_t \sim \pi_{\lambda}^t(\mathbf{u}|\mathbf{x}_t, \theta)$
- 6: Optimize π^* with respect to Equation (2)
- 7: Sample $\mathbf{u}_t^* \sim \pi^*(\mathbf{u}|\mathbf{x}_t)$
- 8: Append $(\mathbf{o}_t, \mathbf{u}_t^*)$ to the dataset \mathcal{D}
- 9: State evolves $\mathbf{x}_{t+1} \sim p(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{u}_t)$
- 10: **end for**
- 11: Train $\pi_{\theta_{i+1}}$ on \mathcal{D}
- 12: end for